

Vector-Borne Diseases

A guide for healthcare providers

Leslie Ayuk-Takor, MSc.

Epidemiologist

Center for Policy, Planning, and Evaluation | June 7, 2023

AGENDA

- ► Online Reporting
- Overview
 - Tick-borne Diseases
 - Mosquito-borne Diseases
- ► Case Study: atypical disease presentation
- **►** Testing
- ► Q&A

Reporting

- Provider Portal
- The online system for all reportable diseases can be accessed on our Infectious Diseases page:

https://dchealth.dc.gov/infectiousdisease

- All other notifiable diseases and conditions should be reported to the DC Health Division of Epidemiology-Disease
 Surveillance and Investigation (DE-DSI) electronically using DC Reporting and Surveillance Center (DCRC), our online reporting system.
 - ▶ Submit a COVID-19 Reporting Form by visiting the COVID-19 Reporting Requirements page
- ► Submit a Notifiable Disease and Condition Case Report Form @ online using DCRC
- ► Submit a Zika Test Request and Reporting Form online using DCRC
- ► Submit an Animal Bite Report Form online using DCRC
- ► Submit a COVID-19 related Death

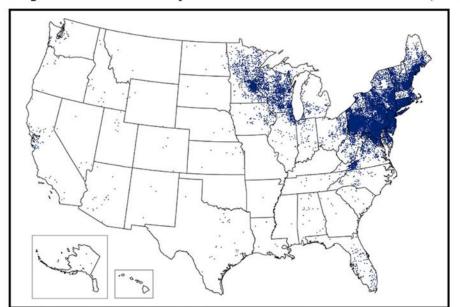
Note: The electronic DCRC Notifiable Disease and Condition Case Report Form replaces the <u>Communicable Disease Case Report Form</u> (PDF), a paper form that was previously used to report cases to DE-DSI.

Additional Information for Healthcare Providers

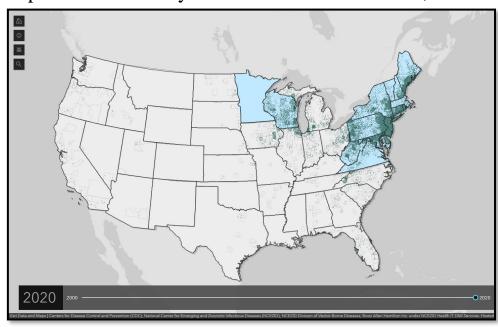
 Health Notices - DE-DSI shares important information and updates on diseases and issues of public health significance in these notices

Reportable in DC

- Anaplasmosis
- Babesiosis
- Borrelia miyamotoi
- Colorado tick fever
- Ehrlichiosis
- Heartland virus

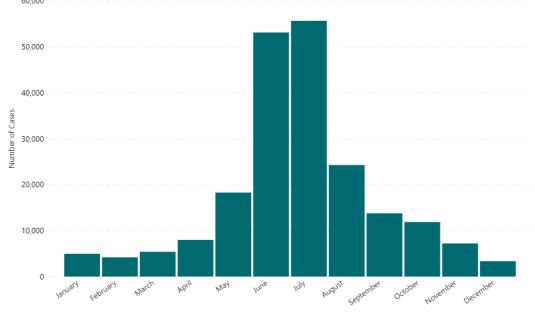

- Lyme disease
- Powassan virus
- Spotted Fever Rickettsiosis (including *Rickettsia* parkeri rickettsiosis)
- Rocky Mountain Spotted Fever (RMSF)
- Southern Tick-Associated Rash Illness (STARI)
- Tularemia

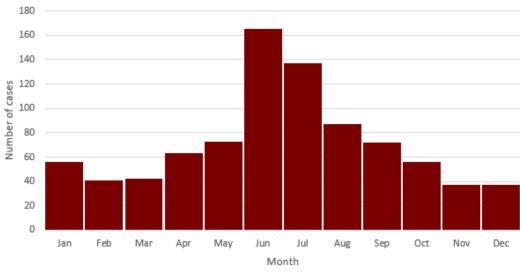
National Trends

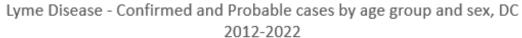

- Endemic in the DMV
- High-incidence jurisdictions

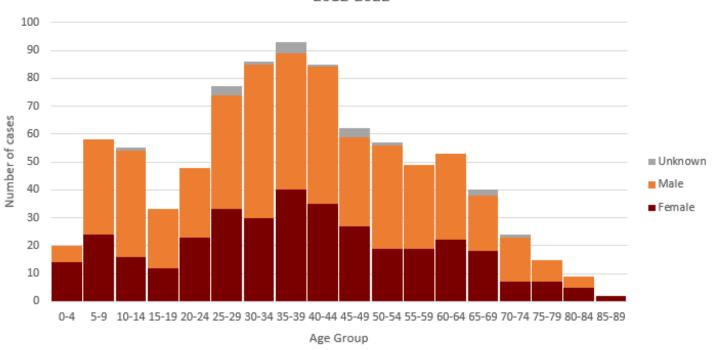
Reported Cases of Lyme Disease — United States, 2017

1 dot placed randomly within county of residence for each confirmed case

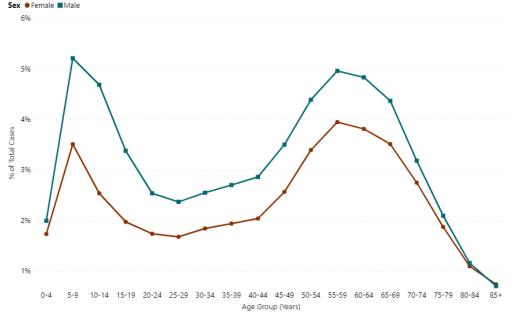

Reported Cases of Lyme Disease – United States, 2020

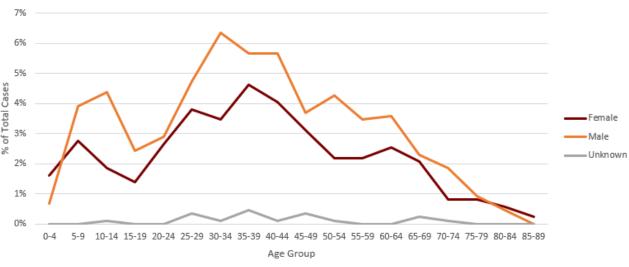

Seasonal Trends


Month of Disease Onset


Lyme Disease - Confirmed and Probable cases by month, DC 2012-2022

Age and Sex Distribution





Age Distribution

Lyme Disease – Percent of Total Cases by Age Group and Year - United States, 2012-2020

Lyme Disease - Percent of Total Confirmed and Probable Cases by Age Group and Sex, DC 2012-2022

Erythema migrans (EM) rash

- ~70-80% of infected persons
- ~3-30 days (7 average) after tick bite
- Expands gradually over several days
- Not always "classic" appearance

Source: https://www.cdc.gov/lyme/signs_symptoms/index.html

Erythema Migrans (EM) Rash

Source: https://www.cdc.gov/lyme/signs_symptoms/rashes.html

Serologic Testing

- Standard two-tier test (STTT)
 - 1 IgM/IgG/IgM+IgG EIA (enzyme immunoassay) or IFA (immunofluorescence assay)
 - 2 IgM/IgG Immunoblot (Western blot)
 - POSITIVE = positive or equivocal 1 + positive 2
- Modified two-tier test (MTTT)*
 - 1 IgM+IgG EIA or IFA
 - 2 IgM/IgG/IgM+IgG EIA or IFA
 - POSITIVE = positive or equivocal 1 + positive or equivocal 2

^{*}Only assays specifically cleared by the FDA for this purpose should be used

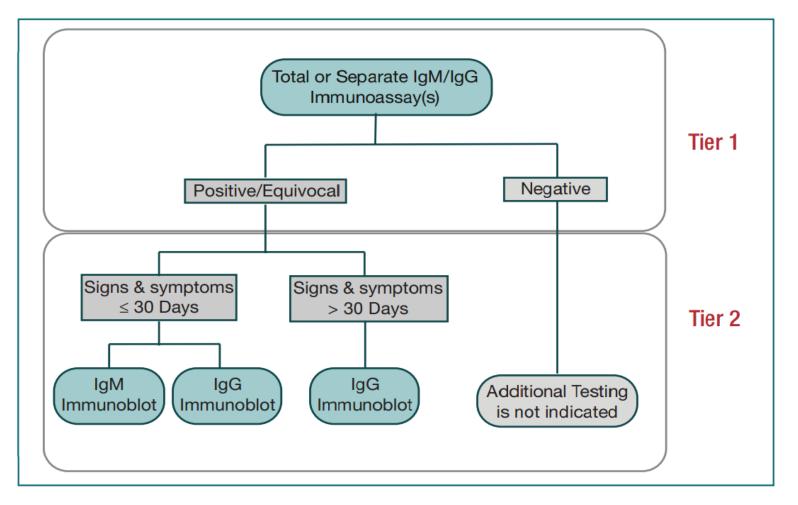
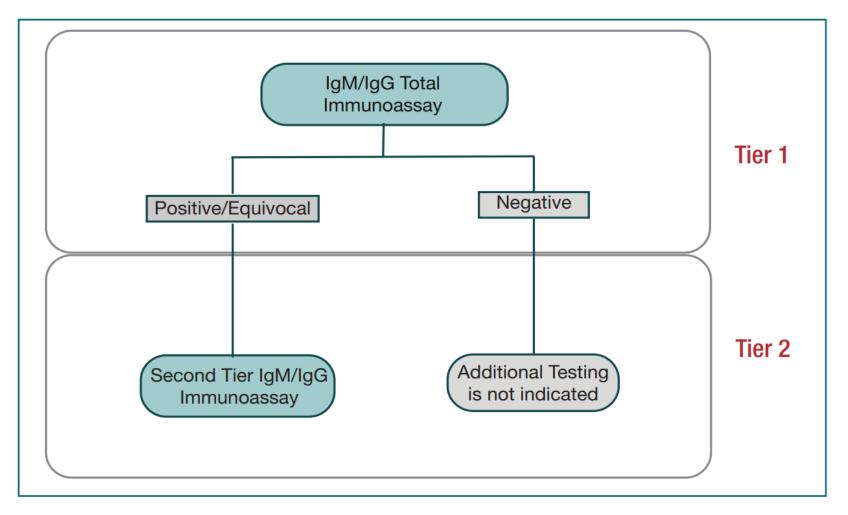
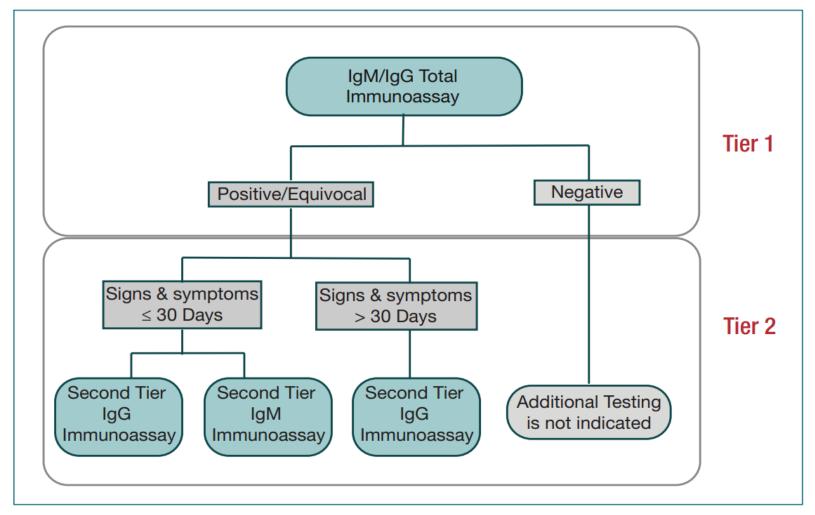



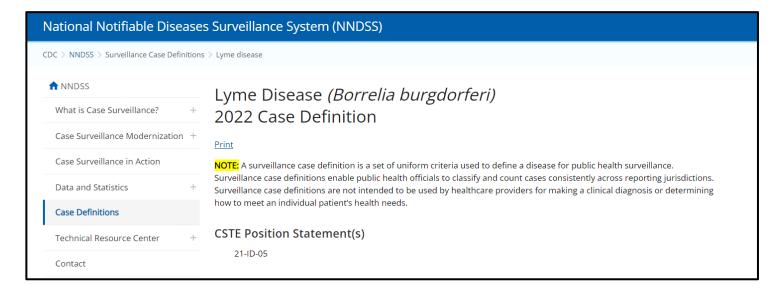
Figure 1: Standard Two-Tiered Testing (STTT)

Source: https://www.aphl.org/aboutAPHL/publications/Documents/ID-2021-Lyme-Disease-Serologic-Testing-Reporting.pdf

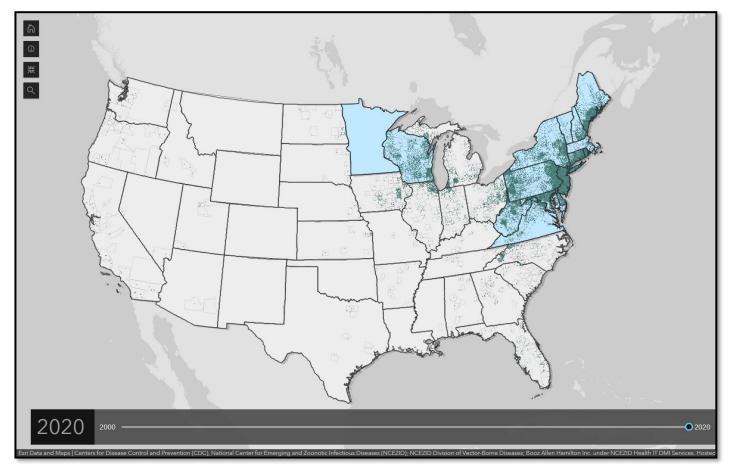

Figure 2: Modified Two-Tiered Testing (MTTT) 1 – Two Total IgM/IgG immunoassay

Source: https://www.aphl.org/aboutAPHL/publications/Documents/ID-2021-Lyme-Disease-Serologic-Testing-Reporting.pdf

Figure 3: Modified Two-Tiered Testing Algorithm (MTTT) 2 – Separate IgM and IgG Second Tier immunoassays



Source: https://www.aphl.org/aboutAPHL/publications/Documents/ID-2021-Lyme-Disease-Serologic-Testing-Reporting.pdf


Case Classification

- New CDC case definition
- Clinical symptoms (e.g., presence of EM rash) are no longer factors for case classification in DC
- Possible classifications:
 - Not a case
 - Suspect
 - Probable

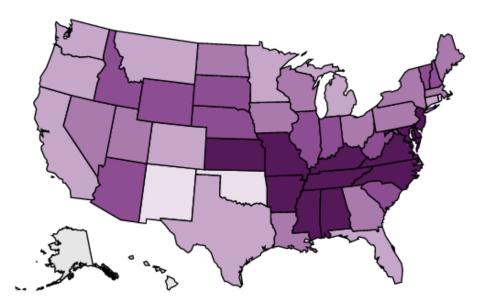
• High-incidence jurisdictions

Tick-borne Rickettsial Diseases

Selected Clinical Features

Disease	Incubation period	Common initial signs and symptoms	Cutaneous signs	Common laboratory findings	Estimated case- fatality rate
Rocky Mountain spotted fever	malaise, myalgia, day nausea, vomiting, bec		Maculopapular rash approximately 2–4 days after fever onset in most, might become petechial and involve palms and soles	Thrombocytopenia, slightly increased hepatic transaminase levels, normal or slightly increased white blood cell count with increased immature neutrophils, hyponatremia	5%-10%
<i>Rickettsia</i> <i>parkeri</i> rickettsiosis	2-10 days	Fever, myalgia, headache	Eschar, sparse maculopapular or vesiculopapular rash that might involve palms and soles	Mild thrombocytopenia, mild leukopenia, increased hepatic transaminase levels	_*
Rickettsia species 364D rickettsiosis	>	Fever, headache, myalgia, fatigue	Eschar or ulcerative lesion with regional lymphadenopathy	•	_*
Ehrlichia chaffeensis ehrlichiosis (human monocytic ehrlichiosis)	5–14 days	Fever, headache, malaise, myalgia, nausea, diarrhea, vomiting	Rash in approximately 30% of adults and 60% of children, variable rash pattern that might involve palms and soles, appears a median of 5 days after illness onset	Leukopenia, thrombocytopenia, increased hepatic transaminase levels, hyponatremia, anemia	3%
Ehrlichia ewingii ehrlichiosis	_+	Fever, headache, malaise, myalgia	Rash rare	Leukopenia, thrombocytopenia, increased hepatic transaminase levels	_*
Ehrlichia muris- like agent ehrlichiosis	>	Fever, headache, malaise, myalgia	Rash in approximately 12%	Thrombocytopenia, lymphopenia, leukopenia, increased hepatic transaminase levels, anemia	*
Human anaplasmosis (human granulocytic anaplasmosis)	5–14 days	Fever, headache, malaise, myalgia, chills	Rash rare, in <10%	Thrombocytopenia, leukopenia, mild anemia, increased hepatic transaminase levels, increased numbers of immature neutrophils	<196

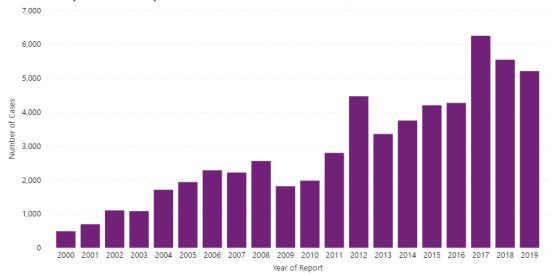
*No known deaths
'Not documented.

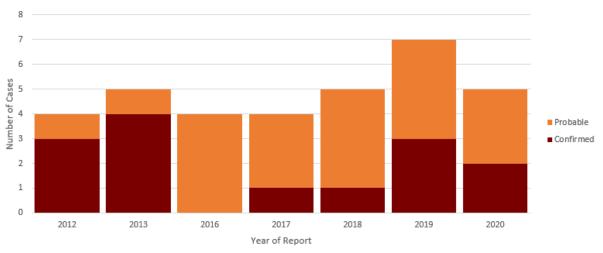

Spotted Fever Rickettsioses

Tick-borne Spotted Fever Group Rickettsioses (SFGR)

- Rocky Mountain Spotted Fever, caused by Rickettsia rickettsii (ticks)
- Rickettsia parkeri rickettsiosis, caused by R. parkeri (ticks)
- Pacific Coast tick fever, caused by Rickettsia species 364D—now R. philipii (ticks)

Annual incidence (per million population) of reported spotted fever rickettsiosis-United States for 2019


● 0 ● 0 to < 1.87 ● 1.87 to < 5.24 ● 5.24 to < 14.93 ● 14.93 + ■ Not Notifiable



Spotted Fever Rickettsioses

Number of reported cases of spotted fever rickettsiosis –United States, 2000–2019

Spotted Fever Rickettsioses - Total Confirmed and Probable Cases by Year, DC 2012-2022

Rocky Mountain Spotted Fever

Distribution of vectors

- Common vectors:
 - Dermacentor variabilis (American dog tick)
 - Dermacentor andersoni (Rocky Mountain wood tick)
 - Rhipicephalus sanguineus (Brown dog tick)
- RMSF most commonly transmitted by American dog tick (*Dermacentor variabilis*) in eastern, central, western US
- Exposure is defined as having been in potential tick habitats within the past 14 days before onset of symptoms. Recent travel history should be considered.

Rocky Mountain Spotted Fever

- Rapidly progressive, can be fatal within days
- Rash is a common sign, typically 2-4 days after fever
- Long-term health problems
- Risk factors for severe illness
 - Delayed treatment
 - Children < 10 years
 - Persons with glucose-6-phosphate dehydrogenase (G6PD) deficiency
- Always take thorough patient history
- Serologic testing
- Report all cases of Spotted Fever Rickettsioses to DC Health within 48
 hours of provisional diagnosis or appearance of suspicious symptoms

Resources

- DC Health
 - Tickborne Diseases: https://dchealth.dc.gov/page/tickborne-diseases
 - Lyme Disease: https://dchealth.dc.gov/page/lyme-disease
- CDC
 - Tickborne Rickettsial Disease guide for healthcare and public health professionals: https://www.cdc.gov/mmwr/volumes/65/rr/pdfs/rr6502.pdf
 - Rocky Mountain Spotted Fever (and other tickborne diseases) Toolkit for Healthcare Providers: https://www.cdc.gov/rmsf/resources/toolkit.html
- Association of Public Health Laboratories
 - Suggested Reporting Language, Interpretation and Guidance Regarding Lyme Disease
 Serologic Test Results: https://www.aphl.org/aboutAPHL/publications/Documents/ID-2021-Lyme-Disease-Serologic-Testing-Reporting.pdf

Reportable in DC

- Cache Valley virus
- Chikungunya virus
- Dengue virus
- Eastern Equine Encephalitis
- Jamestown Canyon virus
- Japanese Encephalitis
- LaCrosse virus

- Malaria
- Saint Louis Encephalitis
- Venezuelan Equine Encephalitis
- West Nile virus
- Western Equine Encephalitis
- Yellow fever
- Zika virus

Please report all cases, including endemic (i.e. West Nile Virus) and imported diseases (i.e. Chikungunya, Dengue, Zika)

For more information, email: vectorborne.epi@dc.gov

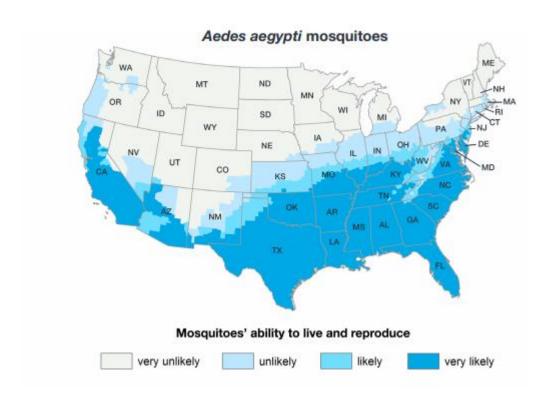
Mosquito-borne Disease Vectors

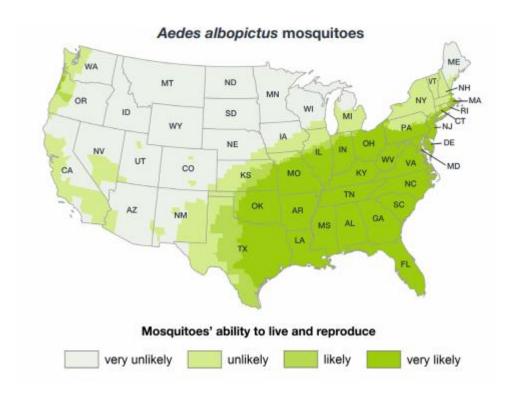
Chikungunya virus Dengue Fever virus Saint Louis Encephalitis West Nile Virus Yellow Fever virus 7ika Virus

Chikungunya virus Dengue Fever virus Saint Louis Encephalitis West Nile Virus Yellow Fever virus Zika Virus

Aedes albopictus

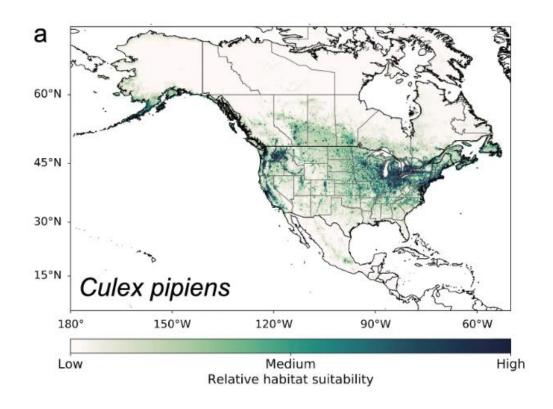
Culex pipiens

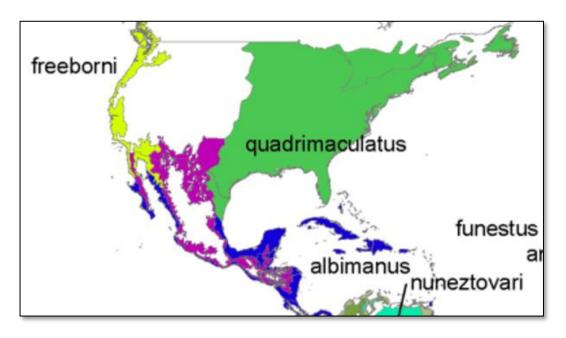



Anopheles

Japanese Encephalitis Saint Louis Encephalitis West Nile Virus

Malaria


Vector distribution

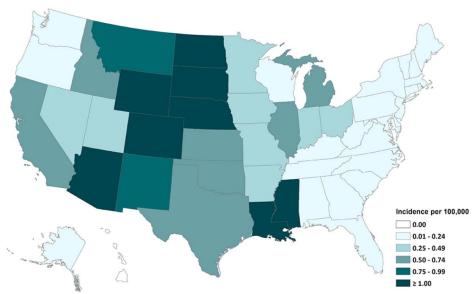


Vector distribution

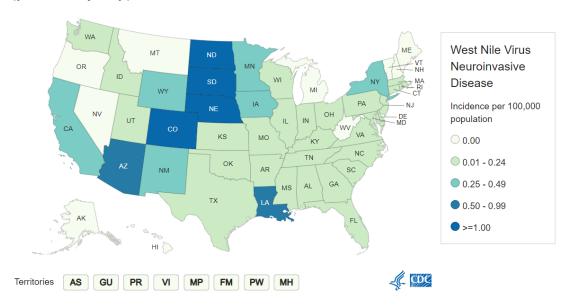
Anopheles species distribution US

Selected Clinical Features

		Chikungunya	Dengue	Malaria	West Nile	Yellow Fever	Zika
average time from exposure to development of symptoms		3 to 7 days (range: 1 to 12 days)	4 to 10 days (range: 3 to 10 days)	≥14 days (range: 7 days to several months)	2 to 6 days (range: 2 to 14 days)	3 to 6 days	3 to 14 days
	fever	✓	✓	√	/	/	V
common symptoms	headache	√	√	✓	✓	1	√
	body/muscle aches	1	1	1	1	1	1
	chills	1	-	✓	-	1	8
	eye pain	_	✓	_	_	_	√
	conjunctivitis	✓	-	-	-	-	✓
	joint pain	1	✓	-	V	-	✓
	nausea/vomiting	-	✓	✓	✓	✓	-
	rash	√	✓		✓.	-	✓
unique symptoms		severe joint pain and/or swelling	low white blood cell count bleeding manifestations	waxing/waning fever and chills	meningitis, encephalitis, myelitis	red eyes, face or tongue	congenital Zika syndrome
			vascular leakage and shock [‡]			hepatitis/jaundice	

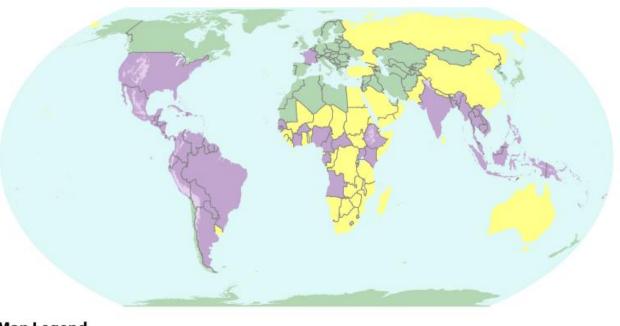

^{*}If exposed to two different serotypes

West Nile Virus


- Endemic in DC since 2002
- Reportable in DC

Average annual incidence of West Nile virus neuroinvasive disease reported to CDC by state, 1999-2021

Source: ArboNET. Arboviral Diseases Branch. Centers for Disease Control and Prevention


West Nile Virus Neuroinvasive Disease Incidence by State 2022 (preliminary map)

Zika Virus

- No current local transmission in the continental United States
- No confirmed Zika virus cases reported from United States territories since 2019
- Travel history is very important
- Reportable in DC

Map Legend

Country or territory wih current Zika outbreak¹

Country or territory that has ever reported

Zika cases² (past or current)

Areas with low likelihood of Zika infection because of high elevation (above 6,500ft/2,000m)

Country or territory with mosquito³ but no reported Zika cases

Country or territory with no mosquitoes that spread Zika

¹ No areas are currently reporting Zika outbreaks

² Locally acquired, mosquito-borne Zika cases

3 Aedes aegypti

Atypical Presentation of Disease

Recrudescent Malaria

Initial Infection

- Traveled to Ghana from 12/7 12/10
- Symptom onset: ~12/22/2022
- Test positive: 12/29/2022 at 11.36% parasitemia (*P. falciparum*)
- Treatment: IV Artesunate (3) followed by Coartem (1)
- Discharged: 1/1/2023 at 0% parasitemia

Return to hospital

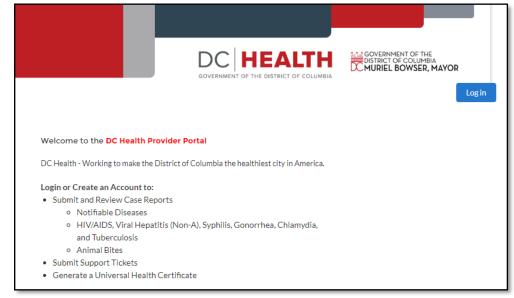
The patient returned to the hospital on 1/10 with complaints of headache, fatigue, shortness of breath, dry cough, palpitations, and tachycardia to the 120s. Malaria smears were negative. Concluded to be delayed hemolytic anemia presumably due to IV artesunate (hgb of 5). Discharged 1/13. Symptom resolution.

Recrudescent Infection

- •Symptom onset: 1/22/2023 (New fever, chills, vomiting, nausea, diarrhea and extreme fatigue)
- •Test positive: 1/24/2023 at 2.5% parasitemia (*P. falciparum*)
- •Treatment: Malarone (3)
- •Discharged: 1/27/2023 at 0% parasitemia
- •No travel between illness
- •Potential suboptimal absorption of oral Coartem due to patient's nausea & vomiting

Atypical Presentation of Disease

Recrudescent Malaria


- Monitor patients for indications of suboptimal absorption of treatment
- Save whole blood specimen for further testing
 - Gametocytes may be present after treatment
 - o Do not cause acute illness, but can make smear interpretation difficult
 - Molecular resistance testing at CDC
 - Could impact treatment and prophylaxis guidelines
- Prompt treatment is critical
- Notify DC Health immediately

Reminder: Online Reporting

- The online system for all reportable diseases can be accessed on our Infectious Diseases page: https://dchealth.dc.gov/infectiousdisease
- Please share as much information as possible
 - Exposures
 - Travel history
 - Treatment

- Hospitalization history
- All related test results
- Don't hesitate to contact us with any questions
 - vectorborne.epi@dc.gov
 - leslie.ayuk-takor@dc.gov

Reminder: Testing

- First line testing should be performed at your facility or a commercial laboratory
- Only confirmatory testing is available through the DC Public Health Lab (DC PHL)
 - For specialized tests available through CDC
 - For tests not available commercially
- Testing at DC PHL and CDC needs pre-approval from DC Health
 - Submit a case report form and contact DC Health directly

Resources for you

- DC Health webpages
- Annual tick-borne and arboviral surveillance reports
- Mosquito surveillance reports
- Vector-borne disease Health Alert Notice (HAN)
- Annual Vector-borne Disease Webinar
- School Outreach
- Animal Disease Surveillance System
 - Lyme Disease in dogs and cats
 - West Nile Virus in dogs, cats, birds
- CDC Division of Vector-Borne Diseases (DVBD)

Questions?

Contacts:

Dr. Anil Mangla, State Epidemiologist

O: 202-442-8141; anil.mangla@dc.gov

Leslie Ayuk-Takor, Epidemiologist

O: 202-442-9143; leslie.ayuk-takor@dc.gov

THANK YOU!

899 North Capitol Street NE, 5th Fl, Washington, DC 20002

